The Cramer varieties Cr(r,r+s,s)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry of the Cramer-Rao bound

The Fisher information matrix determines how much information a measurement brings about the parameters that index the underlying probability distribution for the measurement. In this paper we assume that the parameters structure the mean value vector in a multivariate normal distribution. The Fisher matrix is. then a Gramian constructed from the sensitivity vectors that characterize the first-...

متن کامل

The Cramer-rao Inequality for Star Bodies

Associated with each body K in Euclidean n-space Rn is an ellipsoid 02K called the Legendre ellipsoid of K . It can be defined as the unique ellipsoid centered at the body’s center of mass such that the ellipsoid’s moment of inertia about any axis passing through the center of mass is the same as that of the body. In an earlier paper the authors showed that corresponding to each convex body K ⊂...

متن کامل

The Cramer-Shoup Strong-RSASignature Scheme Revisited

We discuss a modification of the Cramer-Shoup strong-RSA signature scheme. Our proposal also presumes the strong RSA assumption, but allows faster signing and verification and produces signatures of roughly half the size. Then we present a stateful version of our scheme where signing (but not verifying) becomes almost as efficient as with RSA-PSS. We also show how to turn our signature schemes ...

متن کامل

Note for Cramer-Rao Bounds

• (z)r and (z)i denote the real and imaginary part of z. II. CONSTRAINED CRAMER-RAO BOUND A. Problem Statement Problem statement and notation are based on [1]. • a: a K × 1 non-random vector which are to be estimated. • r: an observation of a random vector . • â (R): an estimate of a basing on the observed vector r . It is required that â (R) satisfies M nonlinear equality constraints (M < K), ...

متن کامل

The Cramer-Rao Bound for Sparse Estimation

The goal of this paper is to characterize the best achievable performance for the problem of estimating an unknown parameter having a sparse representation. Specifically, we consider the setting in which a sparsely representable deterministic parameter vector is to be estimated from measurements corrupted by Gaussian noise, and derive a lower bound on the mean-squared error (MSE) achievable in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2014

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2014.02.001